C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Differential and Integral Calculus

Subject Code: 4SC04DIC1		Branch: B.Sc. (Mathematics, Physics)	
Seme	ster: 4 Date: 18/04/2019	Time: 02:30 To 05:30 Mark	ks: 70
Instr (1 (2 (3 (4	 uctions: Use of Programmable calculator & a Instructions written on main answer Draw neat diagrams and figures (if r Assume suitable data if needed. 	any other electronic instrument is prohibited. book are strictly to be obeyed. necessary) at right places.	
Q-1	Attempt the following questions:		(14)
a)	Define: Gradient		(02)
b)	If $\overline{F} = grad\phi$ then $curl \overline{F} = _$.		(01)
c)	What is the value of $div(\phi u)$, if <i>u</i> is a function?	vector point function and ϕ is a scalar point	(01)
d)	Evaluate: $\int_{0}^{2} \int_{0}^{2} (x^{2} + y^{2}) dy dx$		(02)
e)	Evaluate: $\int_{1}^{2} \int_{0}^{a} \int_{2}^{4} xy^{2}z^{3}dz dy dx$		(02)
f)	State Stoke's theorem.		(02)
g) b)	Define: Curvature Explain in short Lagrange's equation	for partial differential equation	(02)
Attem	ot any four questions from Q-2 to Q-8	8	(02)
Q-2	Attempt all questions		(14)
a)	Find the directional derivative of $\phi = 0$	$(x^{2} + y^{2} + z^{2})^{-\frac{1}{2}}$ at the point (3,1,2) in the	(05)
	direction of the vector $yz\hat{i} + xz\hat{j} + xy\hat{k}$.		
b)	Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$, where $\overline{F} = x^{2} \hat{i} + xy \hat{j}$	\hat{j} and <i>C</i> is the boundary of the square in the	(05)
,	plane $z = 0$ and bounded by the lines x	=0, y=0, x=a and y=a.	
c)	Determine the constants a and b such $\overline{A} = (2xy+3yz)\hat{i} + (x^2+axz-4z^2)\hat{j} + (x^2+axz-4z^2)\hat{j}$	that A is irrotational, where $+(3xy+2byz)\hat{k}$.	(04)
0-3	Attempt all questions		(14)
•		$\begin{pmatrix} 1 & n \end{pmatrix}$ $\begin{pmatrix} 1 & n-2 \end{pmatrix}$	

a) If $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then show that $div(grad(r^n)) = n(n+1)r^{n-2}$. (05)

Page 1 of 3

- **b)** Evaluate $\iint_{A} x^2 dx dy$ where *A* is the region in the first quadrant bounded by the (05)
- hyperbola xy = 16 and the lines x = y, y = 0, x = 8. c) Find the equation of tangent plane and normal line to the surface xyz = 6 at the (04) point (1,2,3).

Q-4 Attempt all questions (14)

- **a)** If u, v are vector point functions and ϕ is a scalar point function then prove that (07) $div(u \times v) = (curlu) \cdot v - u \cdot (curlv).$
- **b)** Evaluate $\iint_{S} \overline{F} \cdot \hat{n} dS$, where $\overline{F} = 3y\hat{i} + 2z\hat{j} + x^2yz\hat{k}$ and S is the surface $y^2 = 5x$ in the (05)

positive octant bounded by the plane x = 3, z = 4.

c) Evaluate:
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{1-2\cos^2\theta} \int_{0}^{1} r\sin\theta \, dz \, dr \, d\theta \tag{02}$$

Q-5 Attempt all questions

- a) State and prove Green's theorem.
- **b)** Evaluate $\iint_{R} (x+y) dA$, where *R* is Trapezoidal region with vertices (0,0), (5,0), (05) $\left(\frac{5}{2}, \frac{5}{2}\right), \left(\frac{5}{2}, -\frac{5}{2}\right)$ by using transformation x = 2u + 3v and y = 2u - 3v.
- c) State Gauss-divergence theorem.

Q-6 Attempt all questions

a) Find
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \left(x^{2} + y^{2}\right) dy dx$$
 by changing into polar co-ordinates. (05)

b) Evaluate
$$\int_{0}^{4a} \int_{\frac{x^2}{4x}}^{2\sqrt{ax}} dy \, dx$$
 by change the order of integration. (05)

c) Find the work done when a force $\overline{F} = (x^2 - y^2 + x)\hat{i} + (2x + y)\hat{j}$ moves a particle (04) from origin to (1,1) along a parabola $y^2 = x$.

Q-7 Attempt all questions

(14)

(14)

(14)

(07)

(02)

(14)

- a) Verify Gauss-divergence theorem for $\overline{F} = 2xz\hat{i} + yz\hat{j} + z^2\hat{k}$ for the upper half (10) sphere $x^2 + y^2 + z^2 = a^2$.
- **b**) Find the radius of curvature at any point on the curve $y^2 = 4ax$. (04)

Q-8 Attempt all questions

a) Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \cos y$$
, given that $\frac{\partial z}{\partial y} = -2\cos y$ when $x = 0$ and $z = 0$ when y is a (04) multiple of π .

Page 2 of 3

- **b**) Form the partial differential equation by eliminating the arbitrary function from (03) $z = xy + f(x^2 + y^2).$
- c) Show that the radius of curvature at any point on the cardioids $r = a(1 \cos \theta)$ is (04)

$$\frac{2}{3}\sqrt{2ar}.$$

d) Solve:
$$\frac{y^2 z}{x} \frac{\partial z}{\partial x} + xz \frac{\partial z}{\partial y} = y^2$$
 (03)

Page 3 of 3

